ОТЧЕТ О ДЕЯТЕЛЬНОСТИ НАУЧНОЙ ШКОЛЫ

«Фазовые превращения и разработка сплавов на основе цветных металлов» за 2013-2014 г.

І. Заявки на участия в конкурсах

2014 г.

- 1. ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014-2020 годы». Мероприятие 1.3 «Разработка технологии производства нового Заявка экономнолегированных высокопрочных наноструктурированных алюминиевых сплавов, производимых с использованием алюминия, получаемого по технологии электролиза с инертным анодом» (Победитель конкурса, государственный контракт № 14.578.21.0039 от «22» июля 2014 г, 60 млн. руб., руководитель Н.А.Белов).
- 2. ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014-2020 годы». Мероприятие 1.3 технологии «Разработка получения слитков боралюминия, предназначенных для получения листового проката радиационно-защитного назначения, обеспечивающего прочность (ов) не менее 300 МПа за счет вторичного происхождения» (Победитель наноразмерных фаз государственный контракт № 14.578.21.0004 от 05.06.2014 г., 45 млн. руб. руководитель Н.А.Белов).
- 3. ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014-2020 годы». Мероприятие 1.2. Заявка «Разработка технологии получения ступеней из алюминиевого сплава с износостойким керамическим покрытием для производства электроцентробежных насосов (ЭЦН) с целью повышения энергоэффективности добычи нефти»
- и разработки по приоритетным направлениям развития 4. ФЦП «Исследования научно-технологического комплекса России на 2014-2020 годы». Мероприятие 1.2. «Разработка экономнолегированных алюминиевых использованием алюминия, производимого по технологии электролиза инертными анодами»
- 5. Конкурс РНФ «Проведение фундаментальных научных исследований и поисковых научных исследований отдельными научными группами» "Создание научных принципов легирования алюминиевых сплавов нового поколения на основе кальций-содержащих эвтектик, упрочняемых наночастицами скандий-содержащей фазы" (победитель конкурса, соглашение № 14-19-00632, 15 млн. руб. руководитель Н.А.Белов)

2013 г.

6. Заявка по конкурсу ФГКУ «Войсковая часть 68240» Исследование возможности создания специального сплава» ШИФР НИР: «Пиксель-П» " (победитель конкурса, государственного контракта от 22 апреля 2013г. №2013/242, 6 млн. руб., отв. исполнитель С.С.Мишуров)

II. Защищенные диссертации

2014 г.

1. Т.К.Акопян «Физико-химическое исследование фазовых и структурных превращений в отливках высокопрочных алюминиевых сплавов (системы Al-Zn-Mg-Cu-Ni-Fe) в процессе термической обработки, включающей горячее изостатическое прессование» М.: ИМЕТ, 2014 (научный руководитель: д.т.н.Падалко А.Г., научный консультант: проф. д.т.н. Белов Н.А.).

- 2. Матвеева И.А. «Исследование и разработка технологии производства алюминиевой катанки с добавкой циркония способом непрерывного литья и прокатки с целью получения из нее термостойких проводов ЛЭП». М.: МИСиС, 2014 (научный руководитель: проф. д.т.н. Белов Н.А.).
- 3. Курбаткина Е.И. Исследование и разработка технологии плавки и литья слитков бор-содержащих композиционных алюминиевых сплавов с целью изготовления листов радиационно-защитного назначения» М.: МИСиС, 2014 (научный руководитель: проф. д.т.н. Белов Н.А.).
- 4. Санников А.В. «Совершенствование технологии получения фасонных отливок из алюминиевого сплава АН2ЖМц на базе системы Al–Ni–Mn–Fe–Zr с целью повышения прочностных свойств при 300–350 °C». М.: МИСиС, 2014 (научный руководитель: проф. д.т.н. Белов Н.А.). 2013 г.
- 5. Баженов В.Е.. «Изучение кристаллизационных процессов тройных сплавов с целью оценки их склонности к неравновесной кристаллизации», М: МИСиС, 2013 (научный руководитель: проф. д.т.н. Пикунов М.В.).

III. Молодые ученые, аспиранты, магистранты, сотрудники

№ n/n	ФИО	Уч. степень, уч. звание
1	А.Н. Алабин	К.Т.Н.
2	М.Е. Самошина	К.Т.Н.
3	Т.К.Акопян	К.Т.Н.
4	В.Е. Баженов	К.Т.Н.
5	Е.И. Курбаткина	К.Т.Н
6	А.В. Санников	асп.
7	А.А. Яковлев	асп.
8	О.О. Столярова	асп.
9	Н.О.Короткова	асп.
10	А.О.Михайлина	магистрант
11	В.Дорошенко	магистрант
12	К.Червякова	магистрант
13	Е.Алексеева	магистрант
14	П.Шуркин	магистрант
15	И.Сидун	магистрант
16	С.С. Мишуров	

IV. Публикации (ВАК, Scopus, Web of Science)

2013 г.

- 1. Н.А.Белов, А.С.Турсунов, И.А.Матвеева «Фазовый состав и структура термически упрочняемого экономнолегированного силумина Al9Si-Q». Литейщик России, 2013, №2, С.33 -37.
- 2. Санников А.В., Белов Н.А., Алабин А.Н. «Особенности кристаллизации алюминиевого сплава АН2ЖМц (никалина) при литье в различные формы». Литейщик России, 2013, №4, С.11-14.

- 3. Белов Н.А., Алабин А.Н., Яковлев А.А. «Влияние температуры отжига на фазовый состав литого сплава Al-0,55 мас.% Zr», Изв.вузов. Цв.мет., 2013, № 2, С. 50-55.
- 4. N. A. Belov, A.N.Alabin, A.A.Yakovlev "Influence of the Annealing Temperature on the Phase Composition of Al–0.55 wt % Zr Cast Alloy ", Russian Journal of Non-Ferrous Metals, 2013, Vol. 54, No. 3, pp. 224–228.
- 5. Белов Н.А. «Количественный анализ первичной кристаллизации железосодержащих фаз применительно к алюминиевым сплавам разных систем легирования», Изв.вузов. Цв.мет., 2013, №3, С.37-43.
- 6. N. A. Belov, "Quantitative Analysis of the Primary Crystallization of IronContaining Phases as Applied to Aluminum Alloys of Various Doping System", Russian Journal of Non-Ferrous Metals, 2013, Vol.54, No. 4, pp. 300-306.
- 7. Н.А.Белов «Влияние температуры ГИП-обработки на фазовый состав литейных сплавов на основе гамма алюминида титана», Инноватика и экспертиза, 2013, Выпуск 1 (10), с.102-107.
- 8. Белов Н.А., Авксентьева Н.Н. «Количественный анализ фазовой диаграммы Al—Cu–Mg–Mn–Si применительно к промышленным алюминиевым сплавам 2ххх серии», Металловедение и термическая обработка металлов, 2013, №7, С.16-21.
- 9. N. A. Belov, N.N.Avxentieva "Quantitative Analysis of the Al Cu Mg Mn Si Phase Diagram as Applied to Commercial Aluminum Alloys of Series 2xxx "Metal Science and Heat Treatment, 2013, Vol. 55, Issue 7 (2013), P. 358-363.
- 10. Н.А.Белов, М.Е.Самошина «Влияние температуры ГИП-обработки на фазовый состав литейных сплавов на основе гамма-алюминида титана», Изв.вузов. Цв.мет., 2013, №6, С.27-35.
- 11. Н.А.Белов, И.С.Чупахин «Количественный анализ фазового состава сплава TNM-В1 на основе алюминида титана TiAl(□)», Металловедение и термическая обработка металлов, 2013, № 9, С. 32-37. (DOI) 10.1007/s11041-014-9659-3
- 12. Т.К.Акопян, А.Г.Падалко, Н.А.Белов, Г.С.Злобин, В.Баклан «Влияния повышенного давления на температуры фазовых превращений высокопрочных алюминиевых сплавов системы Al-Zn-Mg-(Cu)-Ni-Fe», Цветные металлы,.2013. № 7, С.81-87.
- 13. Е.И. Курбаткина, А.Г. Ракоч, Н.А. Белов «Исследование коррозионной стойкости борсодержащего алюминиевого сплава», Коррозия: материалы, защита, 2013. № 8, С.38-41.
- 14. Т.К. Акопян, Н.А. Белов, А.Н. Алабин, Г.С. Злобин «Расчетно-экспериментальное исследование фазового состава алюминиевых сплавов на основе системы Al-Zn-Mg-(Cu)-Ni-Fe», Металлы, 2013, №4, С.82-90.
- 15. T. K. Akopyan, N. A. Belov, A. N. Alabin, and G. S. Zlobin «Calculation-Experimental Study of the Phase Composition of Al–Zn–Mg–(Cu)–Ni–Fe Aluminum Alloys» Russian Metallurgy (Metally), Vol. 2013, No. 7, pp. 545–552.
- 16. Н.А.Белов, В.Д.Белов «Влияние температуры горячего изостатического прессования отливок сплавов на основе ☐ TiAl на фазовый состав и структуру», «Известия вузов. Порошковая металлургия и функциональные покрытия», 2013, №3, с.49-54.
- 17. N.A. Belov and A.N. Alabin "Energy Efficient Technology for Al–Cu–Mn–Zr Sheet Alloys", Materials Science Forum Vol. 765 (2013) pp 13-17.
- 18. A. Amenova, N. Belov, D. Smagulov, A. Toleuova, Scientifically based choice of heat-resistant cast aluminum alloys of new generation, Applied Mechanics and Materials Vol. 372 (2013) pp 49-53.
- 19. Н.А. Белов, А.Н. Алабин, Р.А.Биктагиров, И.А.Матвеева, А.Г.Цыденов «Влияние циркония на механические свойства отожженных листов алюминиевого сплава AA3104», Цветные металлы, 2013, №11, с.75-80

Изданные

- 20. N. A. Belov, M.E.Samoshina "Influence of the Thermal Treatment Temperature on the Microstructure and Phase Composition of Casts of β-Solidifying TNM Alloy Based on the Ti–Al–Nb–Mo System", Russian Journal of Non-Ferrous Metals, 2014, Vol. 55, No. 1, pp. 37–45.
- 21. Т.К. Акопян, Н.А. Белов, А.Н. Алабин, Г.С. Злобин. «Расчетно-экспериментальное исследование старения литейных высокопрочных алюминиевых сплавов системы Al–Zn–Mg–(Cu)–Ni–Fe» Металлы, 2014, № 1, с.70-76.
- 22. N.A.Belov, I.S.Chupakhin "Quantitative Analysis of Phase Composition of Alloy TNM-B1 based on TiAl(γ) Titanium Aluminide ", Metal Science and Heat Treatment, 2014, Volume 55, Issue 9 (2014), Page 486-491.
- 23. N.A.Belov, A.N. Alabin, I.A.Matveeva "Optimization of Phase Composition of Al–Cu–Mn–Zr–Sc Alloys for Rolled Products without Requirement for Solution Treatment and Quenching", Journal of Alloys and Compounds, Vol.583 (2014), p.206–213.
- 24. A. Amenova, N. Belov, D. Smagulov and A. Toleuova "Perspective high strength aluminium alloys of new generation based on Al–Ni–Mn–Fe–Si–Zr System", Materials Research Innovations 2014 VOL 18 SUPPL 1, pp.51-53.
- 25. N. A. Belov, E.I.Kurbatkina, M.Gorshenkov "Structure and Phase Composition of Composite Pellets Based on the ALTEK Heat Resistance Aluminum Alloy with BoronContaining Filler", Russian Journal of Non-Ferrous Metals, 2014, Vol. 55, No. 2, pp. 182–185.
- 26. А.А. Аменова, Н.А. Белов, Д.У. Смагулов «Расчет ликвидуса системы Al–Fe–Mn– Ni–Si в области алюминиево-никелевых сплавов (никалинов)» Металловедение и термическая обработка металлов, 2014, № 3, С.26-32.
- 27. И.И. Курбаткин, Н.А. Белов, О.Н. Озерский, Т.И. Муравьёва, О.О. Столярова, А.Н. Алабин «Трибологические и структурные исследования новых антифрикционных материалов на основе алюминия», «Трение и износ», 2014, Том.35, №,2 с.52-57.
- 28. N. A. Belov, O. N. Ozerskiy, T. I. Muravyeva, O. O. Stolyarova, and A. N. Alabin «Tribological and Structural Study of New Aluminum Based Antifriction Materials I. I. Kurbatkina», Journal of Friction and Wear, 2014, Vol. 35, No. 2, pp. 93–97.
- 29. Н.А. Белов, А.Н. Алабин, А.В. Санников, В.Б.Деев «Первичная кристаллизация интерметаллидов в системе Al–Fe–Mn–Ni–Si применительно к литейным сплавам на основе алюминиево-никелевой эвтектики», Известия вузов. Цветная металлургия», 2014. № 3, С.14-19.
- 30. N. A. Belov, A.N.Alabin «Use of Multicomponent Phase Diagrams for Design of High Strength Casting Aluminum Alloys», Materials Science Forum. Vols. 794-796 (2014) pp 909-914.
- 31. Damir Tagirov, Vladislav Kulitskiy, Nikolay Belov, Rustam Kaibyshev, «Effect of Liquid Hot Isostatic Pressing on Structure and Mechanical Properties of an Aluminum Alloy» Materials Science Forum. Vols. 794-796 (2014) pp 845-850.
- 32. Белов Н.А., Алабин А.Н., Санников А.В., Табачкова Н.Ю., Деев В.Б. «Влияние отжига на структуру и упрочнение термостойкого литейного алюминиевого сплава АН2ЖМц», Металловедение и термическая обработка металлов, 2014, №7, С.14-19.
- 33. Н.А.Белов, А.Н. Алабин, А.А. Яковлев «Влияние меди на формирование литой микроструктуры алюминиевых сплавов, содержащих 1 масс.% Мп», Цветные металлы, 2014. № 7, С.66-71.

- 34. T.K.Akopyan, N.A.Belov, A.N.Alabin, G.S.Zlobin. «Calculation-Experimental Study of the Aging of Casting High-Strength Al–Zn–Mg–(Cu)–Ni–Fe Aluminum Alloys», Russian Metallurgy (Metally), Vol. 2014, No.1, pp. 60-60.
- 35. N. A. Belov, A.N.Alabin, A.V.Sannikov, V.B.Deev "Primary Crystallization in the Al–Fe–Mn–Ni–Si System as Applied to Casting Alloys Based on Aluminum–Nickel Eutectic ", Russian Journal of Non-Ferrous Metals, 2014, Vol. 55, Issue 4, pp 356-364.
- 36. A.A.Amenova, N.A.Belov, D.U.Smagulov "Computation of Liquidus of the Al Fe Mn Ni Si System in the Range of Aluminum-Nickel Alloys (Nickalins) ", Metal Science and Heat Treatment, 2014, Vol. 56, Nos. 3-4, pp.137-142.
- 37. Т.Акопян, Н.Белов, Р.Кайбышев, А.Алабин «Влияние жидкостного горячего изостатического прессования на структуру и свойства нового экономнолегированного высокопрочного литейного алюминиевого сплава АЦ6Н0,5Ж на базе системы Al–Zn–Mg–Ni- Fe» Цветные металлы, 2014. № 11, С.100-108.
- 38. Pavel Bryantsev, Marina Samoshina. «Mechanical Milling of Quasicrystalline Al-Cu-Fe Alloys», Materials Science Forum, Vols. 794-796, 2014, pp 761-765.
- 39. Marina Samoshina, Pavel Bryantsev. «Effect of Heat Treatment on Phase Composition and Microstructure of Al-Cu-Fe Alloys with Quasicrystalline Phases», Materials Science Forum, Vols. 794-796, 2014, pp 833-838.

Принятые к публикации

- 1. Е.И. Курбаткина, Н.А. Белов, А.Н. Алабин, И.А.Сидун «Особенности плавки и литья бор-содержащих алюмоматричных композитов на основе сплавов 6ххх серии[»], Цветные металлы, 2015. №
- 2. Наумова Е.А, Белов Н.А.,Базлова Т.А. «Влияние термообработки на структуру и упрочнение литейного алюминиевого эвтектического сплава Al9Zn4Ca3Mg», Металловедение и термическая обработка металлов, 2015
- 3. Н.А. Белов, С.О. Бельтюкова, В.Д.Белов «Количественный анализ фазового состава системы Ti–Al–Mo–V–Zr применительно к литейному титановому сплаву ВТ20Л», Металловедение и термическая обработка металлов, 2015
- 4. А.Н. Алабин, Н.А. Белов, Н.О.Короткова, И.А. Матвеева «Влияние отжига на электросопротивление и упрочнение низколегированных сплавов системы Al–Zr–Si», Цветные металлы, 2015.
- 5. Н.А. Белов, А.М.Достаева, А.Н. Алабин, Н.О.Короткова, А.А. Яковлев «Влияние отжига на электросопротивление и твердость горячекатаных листов алюминиевых сплавов, содержащих до 0,5 масс.% Zr», Известия вузов. Цветная металлургия, 2015
- 6. Н.И.Дашкевич, Н.А.Белов, С.О.Бельтюкова «Расчетный анализ фазовых диаграмм тройных систем Al–Ti–X в области гамма-сплавов на основе алюминида титана», Цветные металлы, 2015.
- 7. Белов Н.А., Наумова Е.А, Базлова Т.А., Алексеева Е.В."Эвтектические сплавы на основе системы Al–Ca с добавкой скандия как возможная альтернатива термически упрочняемых силуминам" Цветные металлы, 2015.
- 8. N.A. Belov, A.N. Alabin, I. Matveeva, A.V. Sannikov "Primary crystallization of intermetallic compounds in Al-Fe-Mn-Ni-Si system in relation to foundry alloys on the basis of an aluminum-nickel eutectic" Light Metals Volume, 2015.
- 9. V. E. Bazhenov «Influence of constitutional undercooling on grain refinement in titanium aluminide alloys», Materials Science and Technology, 2014.
- 10. V.E. Bazhenov, M.V. Pikunov, and V.V. Cheverikin «The Partition Coefficients of Components in Cu-Ni-Mn Alloys», Metallurgical and Materials Transactions A, 2015.

V. Патенты

2013 г.

- 1. Н.А.Белов, В.Д.Белов, А.Н.Алабин, С.С. Мишуров «Термостойкий литейный алюминиевый сплав АН2ЖМц». Патент РФ № 2478131, публ. 27.03.2013, бюл.№9 (заявка на патент РФ № 2010144164 от 29.10.2010).
- 2. Н.А.Белов, В.Д.Белов, А.Н.Алабин, Г.С. Злобин, С.С. Мишуров «Высокопрочный экономнолегировный сплав на основе алюминия (АЦ6Н0,5Ж)», Патент РФ № 2484168, публ. 10.06.2013, бюл.№16 (заявка на патент РФ №2012106136 от 21.02.2012).
- 3. Н.А.Белов «Высокопрочный сплав на основе алюминия с добавкой кальция». Патент РФ № 2478132, публ. 27.03.2013, бюл.№9, заявка на патент РФ № 2012101969 от 23.01.2012
- 4. В.Д.Белов, Н.А.Белов, А.В.Колтыгин, П.В.Петровский, С.П.Павлинич, П.В.Аликин, П.Н.Никифоров, С.Б.Бакерин «Литейный алюминиевый сплав (Al7Si-Q)». ». Патент РФ № 2485199, публ. 20.06.2013, бюл.№17, (Заявка на патент РФ №2011149034 от 02.12.2011)
- 5. Н.А.Белов, А.Н.Алабин, Е.И.Курбаткина «Способ получения бор-содержащего композиционного материала на основе алюминия». Патент РФ № 2 496 899, публ. 27.10.2013 Бюл. № 30 (заявка на патент РФ №2012135764 от 21.08.2012, решение о выдачи патента от 20.06.2013).
- 6. Н.А.Белов, А.Н.Алабин, Е.И.Курбаткина, Ю.А.Абузин «Алюмоматричный композиционный материал с боросодержащим наполнителем». Пат.2496902, публ. 27.10.2013 Бюл. № 30 (заявка на патент РФ №2012137087 от 31.08.2012, решение о выдачи патента от 20.06.2013)
- 7. Н.А. Белов, В.Д.Белов, А.Н.Алабин, П.В.Петровский, С.П.Павлинич, П.В. Аликин «Способ термообработки отливок сплавов на основе гамма алюминида титана». Пат. 2502824 публ. 27.12.2013 Бюл. № 36. (заявка №2012148153 от 13.11.2012, решение о выдачи патента от 23.08.2013).

2014 г.

- 8. Н.А.Белов, А.Н.Алабин «Термостойкий сплав на основе алюминия и способ получения из него деформированных полуфабрикатов», Заявка на патент РФ №2013102128 от 18.01.2013, (решение о выдачи патента от 04.08.2014).
- 9. А.Н.Алабин, Н.А.Белов, Е.И.Курбаткина «Способ получения бор-содержащего алюмоматричного композиционного материала», заявка на патент РФ №2013129492 от 28.06.2013 (решение о выдачи патента от 16.10.2014).

VI. Награды

2013 г.

- 1. «Архимед 2013». (2-5 апреля 2013г. Москва), разработка «Высокопрочный экономнолегированный сплав на основе алюминия» (авторы: Н.А. Белов, В.Д. Белов, А.Н. Алабин, С.С. Мишуров, Г.С. Злобин), золотую медаль.
- 2. Inventions Geneva 2013 (Швейцврия, Женева, 10-14 апреля 2013 г), разработка «Термостойкий литейный алюминиевый сплав» (Белов Н.А., Белов В.Д., Алабин А.Н., Мишуров С.С.) была удостоена серебряной медали.
- 3. Н.А.Белов награжден почетной грамотой Министерства образования и науки РФ, Приказ №942/к-н, 2013 г.
- 4. Н.А.Белов награжден медалью « 55 лет Московской городской организации ВОИР», 2013г

2014 г.

5. Алабин А.Н. награжден дипломом «За лучший проект в промышленности» Международный конгресс Инновационная практика: наука плюс бизнес, 2014 г МГУ

VIII.Конференции, выставки

2013 г.

- 1. 6-ая международная конференция и выставка «Алюминий-21/Рециклинг» (ALUSIL), Москва, гостиница "Radisson Blu Belorusskaya" 9-11.04.2013. (Председатель секции «Современные технологии получения продукции с высокой добавленной стоимостью из ломов алюминиевых сплавов»).
- 2. Научно-практический семинар «Экспертиза научно-технических проектов в области создания новых материалов и нанотехнологий», Москва, ЦВК «Экспоцентр» (Организатор: Минобрнауки России, ФГБНУ НИИ РИНКЦЭ), 26 апреля 2013 года (участник).
- 3. 6-ая международная конференция «Технология легких металлов» (6th International Light Metals Technology Conference- LMT2013), Beaumont Estate, Old Windsor, UK, 24-26/07.2013 (устный доклад «Energy Efficient Technology for Al–Cu–Mn–Zr Sheet Alloys»).
- 4. Научно-практическая конференция «Advanced materials. Композитные материалы с управляемыми свойствами», Ульяновск, Ульяновский нанотехнологический центр, 16.07.2013 (член орг.комитета, устный доклад «Научные основы выбора матричного сплава для получения листов боралюминия с заданными комплексом свойств»).
- 5. Международная научно-техническая конференция «Развитие фундаментальных основ материаловедения легких сплавов и композиционных материалов на их основе для создания изделий аэрокосмической и атомной техники», посвященной 100-летию со дня рождения Академика АН СССР и РАН, профессора, д.т.н. И. Н. Фридляндера, Москва, ВИАМ, 25-26.09.2013 г. (устный доклад «Экономнолегированный высокопрочный алюминиевый сплав АЦ6Н0,5Ж»)
- 6. 2-ой Международная конференция и выставка «Алюминий-21/ ТРАНСПОРТ» (ALUSIL), Санкт-Петербург, гостиница "Sokos Palace Bridge", 1-3.10.2013 г.(устный доклад «Деформируемые алюминиевые сплавы с добавкой циркония для автомобильных применений».
- 7. 7-ая международная научно-практическая конференция «Прогрессивные литейные технологии», Москва. МИСиС, 11-15.11.2013 г. (доклад «Фазовый состав сплавов на основе алюминидов титана с добавками Nb, Mo и Cr при температурах ГИП-обработки».

2014 г.

- 8. Конференция «Современные литейные высокожаропрочные и специальные сплавы, технологии их выплавки и литья монокристаллических рабочих лопаток газотурбинных двигателей», посвященная 110-летию со дня рождения к.т.н. К.К. Чуприна 6 февраля 2014 г.. ВИАМ, Москва, доклад Н.А.Белова «Фазовый состав многокомпонентных сплавов на основе алюминидов титана применительно к температурам ГИП-обработки».
- 9. Russian and CIS METAL SUMMIT 2014, INTERCONTINENTAL HOTEL, MOSCOW, 11-13.02.2014, доклад Н.А.Белова «Advanced Aluminum and Gamma-TiAl Alloys for Aircraft Engines»
- Семинар «Термодинамическое моделирование и кинетика» (Thermo-Calc Software AB), 13.01.2014, МИСиС.
- 11. Дискуссионный клуб «Современные материалы и технологии для производства оборудования, работающего под избыточным давлением» 25–26 февраля 2014 года, Москва, Измайлово, ТГК "Вега", доклад Н.А.Белова «Перспективные высокопрочные и жаропрочные легкие сплавы на основе алюминия и алюминидов титана».
- 12. 14th International Conference on Aluminium Alloys (ICAA14), 15-19.06.2014 Trondheim, Norway, доклады
- «Use of Multicomponent Phase Diagrams for Design of High Strength Casting Aluminum Alloys» (Н.А.Белов)
- «Effect of Liquid Hot Isostatic Pressing on Structure and Mechanical Properties of an Aluminum Alloy» (Н.А.Белов)
- -«Mechanical Milling of Quasicrystalline Al-Cu-Fe Alloys» (М.Е.Самошина)
- -«Effect of Heat Treatment on Phase Composition and Microstructure of Al-Cu-Fe Alloys with Quasicrystalline Phases» (М.Е.Самошина)
- 13. Конференция «Перспективные высокопрочные алюминиевые сплавы для изделий авиационной, ракетной и атомной техники» (посвящается 100-летию со дня рождения к.т.н. Е.И. Кутайцевой) 6 ноября 2014 г.. ВИАМ, Москва, доклад Н.А.Белова «Оптимизации состава высокопрочных алюминиевых сплавов, содержащих более 0,5 масс.% Fe».
- 14.Международная выставка алюминиевой промышленности «Алюминий 2014» 07-10.10.2014 Дюссельдорф, Германия (совместный стенд НИТУ «МИСиС» и ООО «СТРОЙБИС») от НШ С.С.Мишуров 15. Международный конгресс Инновационная практика: наука плюс бизнес «Наука и бизнес: эффект сотрудничества в развитии технологий», МГУ, Москва, 1-2 октября'14, доклад А.Н. Алабина «Погружные насосы для добычи нефти с энергоэффективными ступенями из алюминиевого сплава с защитным керамическим покрытием».
- 16. Международная научно-практическая конференция «Трубопроводы в России и за рубежом настоящее и будущее», ЗАО «Псковэлектросвар», г. Псков 25-26 июня 2014 г, доклад А.Н.Алабина «Использование алюминиевых сплавов для добычи нефти и применения в качестве арматуры трубопроводов как альтернатива сталям и чугунам»
- 17. XVIII Российский симпозиум по растровой электронной микроскопии и аналитическим методам исследования твердых тел (РЭМ-2013) г. Черноголовка. 02.06 07.06.2013. Участник. Публиказия тезисов: Н.А. Белов, Т.И. Муравьева, И.И. Курбаткин, А.Н. Алабин, Е.Г. Котова, О.О. Столярова // Структурное строение и трибологические свойства новых антифрикционных сплавок на основе алюми-ния //. 18. Международный симпозиум «Физика кристаллов 2013», г. Москва, 28.10-02.11.2013. Докладчик. Публикация тезисов: Белов Н. А, Курбаткин И. И., Муравьева Т. И., Столярова О. О. // Исследование трибологических свойств и структуры новых алюминиевых подшипниковых сплавов //.
- 19. III Международная научная конференция «Фундаментальные исследования и инновационные технологии в машиностроении» 13-15 мая 2014 г, Москва, ИМАШ РАН. Докладчик. Публикация те-зисов: О.О. Столярова, Т.И. Муравьева, Б.Я. Сачек, А.М. Мезрин, Д.Л. Загорский. // Трибологические и микроскопические исследования новых подшипниковых сплавов.
- 20. «XXV Российская конференция по электронной микроскопии» РКЭМ-2014. 2 7 июня 2014г., г. Черноголовка, Московская обл. Участник. Публикация тезисов: О.О. Столярова, Т.И. Муравьева, Б.Я. Сачек, А.М. Мезрин, Белов Н.А. // Поверхность новых подшипниковых сплавов на основе алюминия после трибологических испытаний//
- 21. Всероссийская научная Интернет- конференция с международным участием «Спектрометрические методы анализа», 23 сентября 2014 г. Участник. Публикация тезисов: О. О. Столярова, Д. Л. Загорский, Т. И. Муравьёва, Н. А. Белов // Применение рентгеноспектрального анализа для изучения новых антифрикцонных алюминиевых сплавов. /

Руководители научной школы

проф. Н.А. Белов